First Euro-Mediterranean Conference on Materials and Renewable Energies (EMCMRE-1) 21-25 November 2011

TiO₂ Thin Films Prepared by Chemical Bath Deposition.

A. Elfanaoui¹, A. Taleb², A. Ihlal¹, L. Boulkaddat¹, E. Elhamri¹, M. Meddah¹, K. Bouabid¹, X. Portier³.

¹Laboratoire Matériaux et Energies Renouvelables (LMER), Université Ibn Zohr Dép. physique, Faculté des sciences B.P.8106, Hay Dakhla, 80000 Agadir, Maroc.

²Laboratoire d'Electrochimie, chimie des interfaces, ENSCP Université Pierre et Marie Curie PARIS ³CIMAP, ISMRA, Bd Mal Juin, 14050, Caen, France.

E.mail: elfanaouiaha@yahoo.fr

Abstract:

In this study, Titanium dioxide (TiO_2) thin films were synthesized using, a simple, less expensive chemical bath deposition (CBD) method, operating at low temperatures and convenient for large area. The by-product powder was collected through filtering, washed and dried in order to compare it with TiO₂ films.

The X-ray diffraction (XRD) technique shows the presence of the peaks characteristic of the anatase phase after annealing at 500°C, 600°C and 700°C. The surface morphology of the deposited films was characterized by the FEG scanning electronic microscopy (FEGSEM) and atomic force microscopy (AFM). Energy dispersive X-ray spectroscopy (EDX) analysis was used to determine the chemical composition of the prepared films. The UV-Vis-NIR spectroscopy shows that the film exhibits a transmission around 70%. The indirect band gap of the deposited films was found to vary between 2.88 and 3.09 eV depending on the deposition parameters.

Keywords : titanium dioxide, chemical bath deposition, band gap