First Euro-Mediterranean Conference on Materials and Renewable Energies (EMCMRE-1) 21-25 November 2011

Thermal Annealing Effect on Structural Properties of Silicon- Rich Si_xC_{1-X} Thin Films Deposited by R.F. Sputtering

Abdel-ilah El khalfi¹, E. Ech-chamikh¹, Y. Ijdiyaou¹, E. Tomasella², M. Azizan¹ and A. Essafti¹

¹Laboratoire de Physique du Solide et des Couches Minces (LPSCM) ,Faculté des Sciences Semlalia Université Cadi Ayyad , BP. 2390, 40000 Marrakech, Maroc.

²Laboratoire des Matériaux Inorganiques (LMI) Unité Mixte de Recherche 6002 - Université Blaise Pascal / CNRS 63177 Aubière Cedex France

Email : abd.khalfi@gmail.com

Abstract:

Si-rich silicon carbide (Si_xC_{1-x}) thin films have been deposited by radio frequency (RF) co-sputtering. These films were deposited, at 250W RF power, from a composite target consisting of crystalline silicon fragments regularly distributed on the surface of a pure graphite target. The surface covered by the Si fragments is about 67% of the total target surface. The as-deposited films were annealed by rapid thermal (15 min) annealing under inert atmosphere (Ar) at different temperatures (Ta = 700, 850 and 1000°C).

The influence of annealing on structural properties of Si_xC_{1-x} films was investigated by Fourier Transform Infrared (FTIR) and Raman spectroscopy techniques.

The FTIR investigations show, in addition to the expected Si–C bonds, the formation of Si-O bonds due to the presence of oxygen gas in the atmosphere. The increase of annealing temperature leads to an increase of both Si–C and Si-O bonds densities and the corresponding bands shifts to higher wave numbers. Such behaviour is characteristic of a preceding crystallization of SiC and SiO₂.

The Raman spectra show three regions related to the different Si–Si, Si–C and C:C (D-band and G-band) vibration modes. Raman results suggest that C:C and Si-Si bonds present inside the material are probably isolated or located in small clusters. After annealing at 850 ℃, the disappearance of a-Si band indicates a crystallisation of the Si clusters.

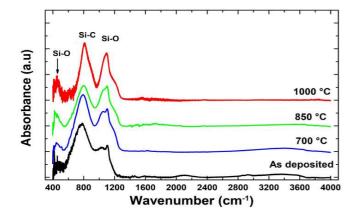


Figure 1: FTIR spectra of SixC1-x films before and after annealing at different temperatures

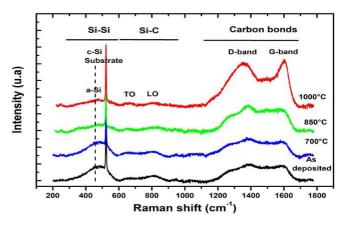


Figure 2: Raman spectra of SixC1-x films before and after annealing at different temperatures