November 21-25 2011

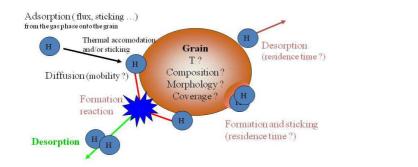
First Euro-Mediterranean Conference on Materials and Renewable Energies (EMCMRE-1) 21-25 November 2011

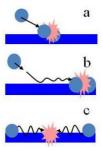
Molecular hydrogen formation experiments in astrophysical conditions

Lisseth Gavilan¹, Jean Louis Lemaire¹, Gianfranco Vidali²

¹LERMA/LAMAp, UMR 8112 du CNRS, de l'Observatoire de Paris et de l'Université de Cergy Pontoise, 5 mail Gay Lussac, 95000 Cergy Pontoise, France

² Physics Department, Syracuse University, Syracuse, NY, 13244, USA


E-mail : lisseth.gavilan@obspm.fr, jean-louis.lemaire@obspm.fr, gvidali@syr.edu


Abstract:

Our goal is to understand the formation of molecular hydrogen in the interstellar medium (ISM). To this end we use a solid state model where we investigate the effects of the cosmic dust (modeled by an amorphous silicate surface) and the surrounding ISM gas (modeled as a beam of deuterium atoms) on D₂ formation. Furthermore, these experiments are performed in ultra-high vacuum conditions. We use a QMS^a to monitor the dynamical coverage and sticking of D atoms and D₂ molecules on dust, while a REMPI-TOF^b spectrometer monitors the newly formed D₂ molecules, assuming a formation rovibrational distribution peaking at v" = 4, J" = 2. These experiments reveal a macroscopic view of the most favorable thermal conditions for H₂ formation on silicates at astrophysical ranges: $5K < T_{dust} < 90K$ and $50K < T_{gas} < 300K$. We discuss the astrophysical implications of this research.

Key words: astrochemistry - ISM: atoms - ISM: molecules - methods: laboratory - molecular processes

Notes: ^a QMS: Quadrupole Mass Spectrometer. ^b REMPI-TOF: Resonantly Enhanced Multiphoton Ionization – Time of Flight.

