Dry Reforming Combined With Steam Reforming Of Methane For Hydrogen Production Over Ni/CeO$_2$ Catalyst

A. Rakib1,2, C. Gennequin1,2, T. Dhainaut3, S. Ringot3, A. Aboukaïs1,2, E. Abi-Aad1,2,*

1Université Lille Nord de France, F-59000 Lille, France
2Université du Littoral Côte d’Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) (EA. 4492), 145, Avenue Maurice Schumann, 59140 Dunkerque, France
3EDF-Centre d’Ingénierie Thermique, Tour Cèdre, 7 Allée de l’Arche, 92099 Paris La Défense, France

*E-mail: edmond.abiaad@univ-littoral.fr

Abstract:

Hydrogen offers a range of benefits as a clean energy carrier that can be produced from any available primary energy source, contributes to a diversification of automotive fuel sources and provides the long-term possibility of being solely produced from renewable energy sources [1]. Recently, the major research efforts have been concentrated on the CO$_2$ reforming (dry reforming) and steam reforming of methane (originated from biogas) for hydrogen production [2, 3]. The combination of these two reactions has substantial interest in alternative routes for the conversion of methane to hydrogen.

In this work, we present new results on the catalytic dry reforming combined with steam reforming of methane over Ni/CeO$_2$ catalyst. The main objective is to elucidate the reaction pathway and the influence of the process parameters (reaction temperature, CO$_2$/H$_2$O feed-ratio...) on the activity and selectivity. The Ni catalyst was prepared by impregnation method with a Ni loading of 15 wt%. The methane reforming was carried out at temperatures between 600-800°C under atmospheric pressure. In the simultaneous CO$_2$ and steam reforming, the conversion of methane and CO$_2$ as well as H$_2$/CO product ratio are strongly influenced by the CO$_2$/H$_2$O feed-ratio and by the reaction temperature. Ni-CeO$_2$ catalyst showed an excellent reactivity in CO$_2$ and steam reforming of methane at 650°C : 90% CH$_4$ conversion and about 68% CO$_2$ conversion and a H$_2$/CO molar ratio equal to 2.3 were obtained. No deactivation and loss of activity were observed during experimental test. These results were correlated with those of DTA/TG analysis, which confirmed the absence of coke formation on the catalyst.

It can be concluded that the dry reforming combined with steam reforming of methane can not only produce hydrogen with desired H$_2$/CO ratio, but also could inhibit carbon formation (originated from methane decomposition (Eq. (1) and Boudouard reaction (Eq. (2)) which is usually a serious problem in the CO$_2$ reforming of methane.

\[
\begin{align*}
\text{CH}_4 & \rightarrow \text{C} + 2\text{H}_2 \quad (\Delta H= 76 \text{ kJ/mol}) \\
2\text{CO} & \rightarrow \text{C} + \text{CO}_2 \quad (\Delta H= -173 \text{ kJ/mol})
\end{align*}
\]

REFERENCES: